Detailed Contents

Chapter 1 Cells and Genomes 1
THE UNIVERSAL FEATURES OF CELLS ON EARTH 2
All Cells Store Their Hereditary Information in the Same Linear Chemical Code: DNA 2
All Cells Replicate Their Hereditary Information by Templated Polymerization 3
All Cells Transcribe Portions of Their Hereditary Information into the Same Intermediary Form: RNA 4
All Cells Use Proteins as Catalysts 5
All Cells Translate RNA into Protein in the Same Way 6
Each Protein Is Encoded by a Specific Gene 7
Life Requires Free Energy 8
All Cells Use Proteins as Catalysts 5
All Cells Transcribe Portions of Their Hereditary Information into the Same Intermediary Form: RNA 4
All Cells Replicate Their Hereditary Information by Templated Polymerization 3
All Cells Store Their Hereditary Information in the Same Linear Chemical Code: DNA 2

THE DIVERSITY OF GENOMES AND THE TREE OF LIFE 10
Summary 10
A Living Cell Can Exist with Fewer Than 500 Genes 9
All Cells Are Enclosed in a Plasma Membrane Across Which Nutrients and Waste Materials Must Pass 8
A Living Cell Can Exist with Fewer Than 500 Genes 9

Chapter 2 Cell Chemistry and Bioenergetics 43
THE CHEMICAL COMPONENTS OF A CELL 43
Water Is Held Together by Hydrogen Bonds 44
Four Types of Noncovalent Attractions Help Bring Molecules Together in Cells 44
Some Polar Molecules Form Acids and Bases in Water 45
A Cell Is Formed from Carbon Compounds 47
Cells Contain Four Major Families of Small Organic Molecules 47
The Chemistry of Cells Is Dominated by Macromolecules with Remarkable Properties 47
Noncovalent Bonds Specify Both the Precise Shape of a Macromolecule and Its Binding to Other Molecules 49
Summary 50

CATALYSIS AND THE USE OF ENERGY BY CELLS 51
Cell Metabolism Is Organized by Enzymes 51
Biological Order Is Made Possible by the Release of Heat Energy from Cells 52
Cells Obtain Energy by the Oxidation of Organic Molecules 54
Oxidation and Reduction Involve Electron Transfers 55
Enzymes Lower the Activation-Energy Barriers That Block Energetically Favorable Reaction 62
Each Other 62
Enzymes Can Drive Substrate Molecules Along Specific Reaction Pathways 58
How Enzymes Find Their Substrates: The Enormous Rapidity of Molecular Motions 59
The Free-Energy Change for a Reaction, ∆G°, Determines Whether It Can Occur Spontaneously 60
The Concentration of Reactants Influences the Free-Energy Change and a Reaction's Direction 61
The Standard Free-Energy Change, ∆G°, Makes It Possible to Compare the Energetics of Different Reactions 61
The Equilibrium Constant and ∆G° Are Readily Derived from Each Other 62
The Free-Energy Changes of Coupled Reactions Are Additive 63
Activated Carrier Molecules Are Essential for Biosynthesis 63
The Formation of an Activated Carrier Is Coupled to an Energetically Favorable Reaction 64
ATP Is the Most Widely Used Activated Carrier Molecule 65
Energy Stored in ATP Is Often Harnessed to Join Two Molecules Together 66
NADH and NADPH Are Important Electron Carriers 67
There Are Many Other Activated Carrier Molecules in Cells 68
The Synthesis of Biological Polymers Is Driven by ATP Hydrolysis 70
Summary 73

HOW CELLS OBTAIN ENERGY FROM FOOD 73
Glycolysis Is a Central ATP-Producing Pathway 74
Fermentations Produce ATP in the Absence of Oxygen 75
Experiments with Frog Embryos Suggest that both Activating and Repressive Chromatin Structures Can Be Inherited Epigenetically 205
Chromatin Structures Are Important for Eukaryotic Chromosome Function 206
Summary 207
THE GLOBAL STRUCTURE OF CHROMOSOMES 207
Chromosomes Are Folded into Large Loops of Chromatin 207
Polytene Chromosomes Are Uniquely Useful for Visualizing Chromatin Structures 208
There Are Multiple Forms of Chromatin 210
Chromatin Loops Decondense When the Genes Within Them Are Expressed 211
Chromatin Can Move to Specific Sites Within the Nucleus to Alter Gene Expression 212
Networks of Macromolecules Form a Set of Distinct Biochemical Environments inside the Nucleus 213
Mitotic Chromosomes Are Especially Highly Condensed 214
Summary 216
HOW GENOMES EVOLVE 216
Genome Comparisons Reveal Functional DNA Sequences by their Conservation Throughout Evolution 217
Genome Alterations Are Caused by Failures of the Normal Mechanisms for Copying and Maintaining DNA, as well as by Transposable DNA Elements 217
The Genome Sequences of Two Species Differ in Proportion to the Length of Time Since They Have Separately Evolved 218
Phylogenetic Trees Constructed from a Comparison of DNA Sequences Trace the Relationships of All Organisms 219
A Comparison of Human and Mouse Chromosomes Shows How the Structures of Genomes Diverge 221
The Size of a Vertebrate Genome Reflects the Relative Rates of DNA Addition and DNA Loss in a Lineage 222
We Can Infer the Sequence of Some Ancient Genomes 223
Multispecies Sequence Comparisons Identify Conserved DNA Sequences of Unknown Function 224
Changes in Previously Conserved Sequences Can Help Decipher Critical Steps in Evolution 226
Mutations in the DNA Sequences That Control Gene Expression Have Driven Many of the Evolutionary Changes in Vertebrates 227
Gene Duplication Also Provides an Important Source of Genetic Novelty During Evolution 227
Duplicated Genes Diverge 228
The Evolution of the Globin Gene Family Shows How DNA Duplications Contribute to the Evolution of Organisms 229
Genes Encoding New Proteins Can Be Created by the Recombination of Exons 230
Neutral Mutations Often Spread to Become Fixed in a Population, with a Probability That Depends on Population Size 230
A Great Deal Can Be Learned from Analyses of the Variation Among Humans 232
Summary 234
Problems 234
References 236

Chapter 5 DNA Replication, Repair, and Recombination 237
THE MAINTENANCE OF DNA SEQUENCES 237
Mutation Rates Are Extremely Low 237
Low Mutation Rates Are Necessary for Life as We Know It Summary 238
DNA REPLICATION MECHANISMS 239
Base-Pairing Underlies DNA Replication and DNA Repair 239
The DNA Replication Fork Is Asymmetrical 240
The High Fidelity of DNA Replication Requires Several Proofreading Mechanisms 242
Only DNA Replication in the 5’-to-3’ Direction Allows Efficient Error Correction 244
A Special Nucleotide-Polymerizing Enzyme Synthesizes Short RNA Primer Molecules on the Lagging Strand 245
Special Proteins Help to Open Up the DNA Double Helix in Front of the Replication Fork 246
A Sliding Ring Holds a Moving DNA Polymerase Onto the DNA 246
The Proteins at a Replication Fork Cooperate to Form a Replication Machine 249
A Strand-Directed Mismatch Repair System Removes Replication Errors That Escape from the Replication Machine 250
DNA Topoisomerases Prevent DNA Tangling During Replication 251
DNA Replication Is Fundamentally Similar in Eukaryotes and Bacteria 253
Summary 254
THE INITIATION AND COMPLETION OF DNA REPLICATION IN CHROMOSOMES 254
DNA Synthesis Begins at Replication Origins 254
Bacterial Chromosomes Typically Have a Single Origin of DNA Replication 255
Eukaryotic Chromosomes Contain Multiple Origins of Replication In Eukaryotes, DNA Replication Takes Place During Only One Part of the Cell Cycle 258
Different Regions on the Same Chromosome Replicate at Distinct Times in S Phase 258
A Large Multisubunit Complex Binds to Eukaryotic Origins of Replication 259
Features of the Human Genome That Specify Origins of Replication Remain to Be Discovered 260
New Nucleosomes Are Assembled Behind the Replication Fork 261
Telomerase Replicates the Ends of Chromosomes 262
Telomeres Are Packaged Into Specialized Structures That Protect the Ends of Chromosomes 263
Telomere Length Is Regulated by Cells and Organisms 264
Summary 265
DNA REPAIR 266
Without DNA Repair, Spontaneous DNA Damage Would Rapidly Change DNA Sequences 267
The DNA Double Helix Is Readily Repaired 268
DNA Damage Can Be Removed by More Than One Pathway 269
Coupling Nucleotide Excision Repair to Transcription Ensures That the Cell's Most Important DNA Is Efficiently Repaired 271
The Chemistry of the DNA Bases Facilitates Damage Detection 271
Special Translesion DNA Polymerases Are Used in Emergencies 273
Double-Strand Breaks Are Efficiently Repaired 273
DNA Damage Delays Progression of the Cell Cycle 276
Summary 276
HOMOLOGOUS RECOMBINATION 276
Homologous Recombination Has Common Features in All Cells 277
DNA Base-Pairing Guides Homologous Recombination 277
Homologous Recombination Can Flawlessly Repair Double-Strand Breaks in DNA 278
Strand Exchange Is Carried Out by the RecA/Rad51 Protein 279
Homologous Recombination Can Rescue Broken DNA Replication Forks 280
Cells Carefully Regulate the Use of Homologous Recombination in DNA Repair 280
Homologous Recombination Is Crucial for Meiosis 282
Meiotic Recombination Begins with a Programmed Double-Strand Break 282
Holliday Junctions Are Formed During Meiosis 284
Homologous Recombination Produces Both Crossovers and Non-Crossovers During Meiosis 284
Homologous Recombination Often Results in Gene Conversion 286
Summary 286
TRANSPOSITION AND CONSERVATIVE SITE-SPECIFIC RECOMBINATION 287
Through Transposition, Mobile Genetic Elements Can Insert Into Any DNA Sequence 288
DNA-Only Transposons Can Move by a Cut-and-Paste Mechanism 288
Some Viruses Use a Transposition Mechanism to Move Themselves Into Host-Cell Chromosomes 290
Retroviral-like Retrotransposons Resemble Retroviruses, but Lack a Protein Coat 291
A Large Fraction of the Human Genome Is Composed of Nonretroviral Retrotransposons 291
Different Transposable Elements Predominate in Different Organisms 292
Genome Sequences Reveal the Approximate Times at Which Transposable Elements Have Moved 292
DETAILED CONTENTS

Chapter 14 Energy Conversion: Mitochondria and Chloroplasts 753

THE MITOCHONDRION 755
The Mitochondrion Has an Outer Membrane and an Inner Membrane 757
The Inner Membrane Cristae Contain the Machinery for Electron Transport and ATP Synthesis 758
The Citric Acid Cycle in the Matrix Produces NADH 758
Mitochondria Have Many Essential Roles in Cellular Metabolism 759
A Chemiosmotic Process Couples Oxidation Energy to ATP Production 761
The Energy Derived from Oxidation Is Stored as an Electrochemical Gradient 762
Summary 763

THE PROTON PUMPS OF THE ELECTRON-TRANSPORT CHAIN 763
The Redox Potential Is a Measure of Electron Affinities 763
Electron Transfers Release Large Amounts of Energy 764
Transition Metal Ions and Quinones Accept and Release Electrons Readily 764
NADH Transfers Its Electrons to Oxygen Through Three Large Enzyme Complexes Embedded in the Inner Membrane 766
The NADH Dehydrogenase Complex Contains Separate Modules for Electron Transport and Proton Pumping 768
Cytochrome c Reductase Takes Up and Releases Protons on the Opposite Side of the Crista Membrane, Thereby Pumping Protons 768
The Cytochrome c Oxidase Complex Pumps Protons and Reduces O2 Using a Catalytic Iron–Copper Center 770
The Respiratory Chain Forms a Supercomplex in the Crista Membrane 772
Protons Can Move Rapidly Through Proteins Along Prefixed Pathways 773
Summary 774

ATP PRODUCTION IN MITOCHONDRIA 774
The Large Negative Value of \(\Delta G \) for ATP Hydrolysis Makes ATP Useful to the Cell 774
The ATP Synthase Is a Nanomachine that Produces ATP by Rotary Catalysis 776
Proton-driven Turbines Are of Ancient Origin 777
Mitochondrial Cristae Help to Make ATP Synthesis Efficient 778
Special Transport Proteins Exchange ATP and ADP Through the Inner Membrane 779
Chemiosmotic Mechanisms First Arose in Bacteria 780
Summary 782

CHLOROPLASTS AND PHOTOSYNEHESIS 782
Chloroplasts Assemble Mitochondria But Have a Separate Thylakoid Compartment 782
Chloroplasts Capture Energy from Sunlight and Use It to Fix Carbon 783
Carbon Fixation Uses ATP and NADPH to Convert CO2 into Sugars 784
Sugars Generated by Carbon Fixation Can Be Stored as Starch or Consumed to Produce ATP 785
The Thylakoid Membranes of Chloroplasts Contain the Protein Complexes Required for Photosynthesis and ATP Generation 786
Chlorophyll–Protein Complexes Can Transfer Either Excitation Energy or Electrons 787
A Photosystem Consists of an Antenna Complex and a Reaction Center 788
The Thylakoid Membrane Contains Two Different Photosystems Working in Series 789
Why Do Mitochondria and Chloroplasts Maintain a Costly Organelle Genes Are Maternally Inherited in Animals and Plants

Chapter 15 Cell Signaling

PRINCIPLES OF CELL SIGNALING

Extracellular Signals Can Act Over Short or Long Distances
Extracellular Signal Molecules Bind to Specific Receptors
Each Cell Is Programmed to Respond to Specific Combinations of Extracellular Signals
There Are Three Major Classes of Cell-Surface Receptor Proteins
Cell-Surface Receptors Relay Signals Via Intracellular Signaling Molecules
Intracellular Signals Must Be Specific and Precise in a Noisy Cytoplasm
Intracellular Signaling Complexes Form at Activated Receptors
Modular Interaction Domains Mediate Interactions Between Intracellular Signaling Proteins
The Relationship Between Signal and Response Varies in Different Signaling Pathways
The Speed of a Response Depends on the Turnover of Signaling Molecules
Cells Can Respond Abruptly to a Gradually Increasing Signal
Positive Feedback Can Generate an All-or-One Response
Negative Feedback is a Common Motif in Signaling Systems
Cells Can Adjust Their Sensitivity to a Signal
Summary

SIGNALING THROUGH G-PROTEIN-COUPL ED RECEPTORS

Trimeric G Proteins Relay Signals From GPCRs
Some G Proteins Regulate the Production of Cyclic AMP
Cyclic-AMP-Dependent Protein Kinase (PKA) Mediates Most of the Effects of Cyclic AMP

Chapter 16 The Cytoskeleton

FUNCTION AND ORIGIN OF THE CYTOSKELETON

Cytoskeletal Filaments Adapt to Form Dynamic or Stable Structures
The Cytoskeleton Determines Cellular Organization and Polarity
Filaments Assemble from Protein Subunits That Impart Specific Physical and Dynamic Properties
CONTROl OF CEll DIVISION AND CEll GROWTH 1010
Mitogens Stimulate Cell Division 1011
Cells Can Enter a Specialized Nondividing State 1012
Mitogens Stimulate G1-Cdk and G1/S-Cdk Activities 1012
DNA Damage Blocks Cell Division: The DNA Damage Response 1014
Many Human Cells Have a Built-In Limitation on the Number of Times They Can Divide 1016
Abnormal Proliferation Signals Cause Cell-Cycle Arrest or Apoptosis, Except in Cancer Cells 1016
Cell Proliferation is Accompanied by Cell Growth 1016
Cell Proliferation Culminates in the Formation of a Synaptonemal Complex 1016
Homolog Segregation Depends on Several Unique Features of Meiosis I 1018
Crossing-Over Is Highly Regulated 1019
Meiosis Frequently Goes Wrong 1019
Summary 1019
Problems 1020
References 1020

Chapter 18 Cell Death 1021
Apoptosis Eliminates Unwanted Cells 1021
Apoptosis Depends on an Intracellular Proteolytic Cascade That Is Mediated by Caspases 1022
Cell-Surface Death Receptors Activate the Extrinsic Pathway of Apoptosis 1024
The Intrinsic Pathway of Apoptosis Depends on Mitochondria 1025
Bcl2 Proteins Regulate the Intrinsic Pathway of Apoptosis 1025
IAPs Help Control Caspases 1029
Extracellular Survival Factors Inhibit Apoptosis in Various Ways 1030
Phagocytes Remove the Apoptotic Cell 1031
Either Excessive or Insufficient Apoptosis Can Contribute to Disease 1031
Summary 1032
Problems 1033
References 1034

Chapter 19 Cell Junctions and the Extracellular Matrix 1035
CELL–MATRIX JUNCTIONS 1038
Cadherins Form a Diverse Family of Adhesion Molecules 1038
Cadherins Mediate Homophilic Adhesion 1038
Cadherin-Dependent Cell–Cell Adhesion Guides the Organization of Developing Tissues 1040
Epithelial–Mesenchymal Transitions Depend on Control of Cadherins 1042
Catenins Link Classical Cadherins to the Actin Cytoskeleton 1042
Adherens Junctions Respond to Forces Generated by the Actin Cytoskeleton 1042
Tissue Remodeling Depends on the Coordination of Actin-Mediated Contraction With Cell–Cell Adhesion 1043
Desmosomes Give Epithelia Mechanical Strength 1045
Tight Junctions Form a Seal Between Cells and a Fence Between Plasma Membrane Domains 1047
Tight Junctions Contain Strands of Transmembrane Adhesion Proteins 1047
Scaffold Proteins Organize Junctional Protein Complexes 1049
Gap Junctions Couple Cells Both Electrically and Metabolically 1050
A Gap-Junction Connexon Is Made of Six Transmembrane Connexin Subunits 1051
In Plants, Plasmodesmata Perform Many of the Same Functions as Gap Junctions 1053
Selectins Mediate Transient Cell–Cell Adhesions in the Bloodstream 1054

Chapter 20 Cancer 1091
CANCER AS A MICROEVOLUTIONARY PROCESS 1091
Cancer Cells Bypass Normal Proliferation Controls and Colonize Other Tissues 1092
Most Cancers Derive from a Single Abnormal Cell 1093
Cancer Cells Contain Somatic Mutations 1094
A Single Mutation Is Not Enough to Change a Normal Cell into a Cancer Cell 1094
Cancers Develop Gradually from Increasingly Aberrant Cells 1095
Tumor Progression Involves Successive Rounds of Random Inherited Change Followed by Natural Selection 1096
Human Cancer Cells Are Genetically Unstable 1097
Cancer Cells Display an Altered Control of Growth 1098
Cancer Cells Have an Altered Sugar Metabolism 1098
Cancer Cells Have an Abnormal Ability to Survive Stress and DNA Damage 1099
Human Cancer Cells Escape a Built-In Limit to Cell Proliferation 1099
The Tumor Microenvironment Influences Cancer Development 1100
Cancer Cells Must Survive and Proliferate in a Foreign Environment 1101
Many Properties Typically Contribute to Cancerous Growth
Summary 1103

CANCER-CRITICAL GENES: HOW THEY ARE FOUND AND WHAT THEY DO 1104
The Identification of Gain-of-Function and Loss-of-Function Cancer Mutations Has Traditionally Required Different Methods
Retroviruses Can Act as Vectors for Oncogenes That Alter Cell Behavior
Different Searches for Oncogenes Converged on the Same Gene—Ras
Genes Mutated in Cancer Can Be Made Overactive in Many Ways
Studies of Rare Hereditary Cancer Syndromes First Identified Tumor Suppressor Genes
Both Genetic and Epigenetic Mechanisms Can Inactivate Tumor Suppressor Genes
Systematic Sequencing of Cancer Cell Genomes Has Transformed Our Understanding of the Disease
Many Cancers Have an Extraordinarily Disrupted Genome
Many Mutations in Tumor Cells Are Merely Passengers
About One Percent of the Genes in the Human Genome Are Cancer-Critical
Disruptions in a Handful of Key Pathways Are Common to Many Cancers
Mutations in the PI3K/Akt/mTOR Pathway Drive Cancer Cells to Grow
Mutations in the p53 Pathway Enable Cancer Cells to Survive and Proliferate Despite Stress and DNA Damage
Genome Instability Takes Different Forms in Different Cancers
Cancers of Specialized Tissues Use Many Different Routes to Target the Common Core Pathways of Cancer
Studies Using Mice Help to Define the Functions of Cancer-Critical Genes
Cancers Become More and More Heterogeneous as They Progress
The Changes in Tumor Cells That Lead to Metastasis Are Still Largely a Mystery
A Small Population of Cancer Stem Cells May Maintain Many Tumors
The Cancer Stem-Cell Phenomenon Adds to the Difficulty of Curing Cancer
Colorectal Cancers Evolve Slowly Via a Succession of Visible Changes
A Few Key Genetic Lesions Are Common to a Large Fraction of Colorectal Cancers
Some Colorectal Cancers Have Defects in DNA Mismatch Repair
The Stages of Tumor Progression Can Often Be Correlated with Specific Mutations
Summary 1118

CANCER PREVENTION AND TREATMENT: PRESENT AND FUTURE 1127
Epidemiology Reveals That Many Cases of Cancer Are Preventable
Sensitive Assays Can Detect Those Cancer-Causing Agents that Damage DNA
Fifty Percent of Cancers Could Be Prevented by Changes in Lifestyle
Viruses and Other Infections Contribute to a Significant Proportion of Human Cancers
Cancers of the Uterine Cervix Can Be Prevented by Vaccination Against Human Papillomavirus
Infectious Agents Can Cause Cancer in a Variety of Ways
The Search for Cancer Cures Is Difficult but Not Hopeless
Traditional Therapies Exploit the Genetic Instability and Loss of Cell-Cycle Checkpoint Responses in Cancer Cells
New Drugs Can Kill Cancer Cells Selectively by Targeting Specific Mutations
PARP Inhibitors Kill Cancer Cells That Have Defects in Brca1 or Brca2 Genes
Small Molecules Can Be Designed to Inhibit Specific Oncogenic Proteins
Many Cancers May Be Treatable by Enhancing the Immune Response Against the Specific Tumor
Cancers Evolve Resistance to Therapies
Combination Therapies May Succeed Where Treatments with One Drug at a Time Fail
We Now Have the Tools to Devise Combination Therapies Tailored to the Individual Patient
Summary 1141
Problems 1141
References 1143

Chapter 21 Development of Multicellular Organisms 1145

OVERVIEW OF DEVELOPMENT 1147
Conserved Mechanisms Establish the Basic Animal Body Plan
The Developmental Potential of Cells Becomes Progressively Restricted
Cell Memory Underlies Cell Decision-Making
Several Model Organisms Have Been Crucial for Understanding Development
Genes Involved in Cell–Cell Communication and Transcriptional Control Are Especially Important for Animal Development
Regulatory DNA Seems Largely Responsible for the Differences Between Animal Species
Small Numbers of Conserved Cell–Cell Signaling Pathways Coordinate Spatial Patterning
Through Combinatorial Control and Cell Memory, Simple Signals Can Generate Complex Patterns
Morphogens Are Long-Range Inductive Signals That Exert Graded Effects
Lateral Inhibition Can Generate Patterns of Different Cell Types
Short-Range Activation and Long-Range Inhibition Can Generate Complex Cellular Patterns
Asymmetric Cell Division Can Also Generate Diversity
Initial Patterns Are Established in Small Fields of Cells and Refined by Sequential Induction as the Embryo Grows
Developmental Biology Provides Insights into Disease and Tissue Maintenance
Summary 1154

MECHANISMS OF PATTERN FORMATION 1155
Different Animals Use Different Mechanisms to Establish Their Primary Axes of Polarization
Studies in Drosophila Have Revealed the Genetic Control Mechanisms Underlying Development
Egg-Polarity Genes Encode Macromolecules Deposited in the Egg to Organize the Axes of the Early Drosophila Embryo
Three Groups of Genes Control Drosophila Segmentation Along the A-P Axis
A Hierarchy of Gene Regulatory Interactions Subdivides the Drosophila Embryo
Egg-Polarity, Gap, and Pair-Rule Genes Create a Transient Pattern That Is Remembered by Segment-Polarity and Hox Genes
Hox Genes Permanently Pattern the A-P Axis
Hox Proteins Give Each Segment Its Individuality
Hox Genes Are Expressed According to Their Order in the Hox Complex
Trithorax and Polycomb Group Proteins Enable the Hox Complexes to Maintain a Permanent Record of Positional Information
The D-V Signaling Genes Create a Gradient of the Transcription Regulator Dorsal
A Hierarchy of Inductive Interactions Subdivides the Vertebrate Embryo
A Competition Between Secreted Signaling Proteins Patterns the Vertebrate Embryo
The Insect Dorsoventral Axis Corresponds to the Vertebrate Ventral-Dorsal Axis
Hox Genes Control the Vertebrate A-P Axis
Some Transcription Regulators Can Activate a Program That Defines a Cell Type or Creates an Entire Organ
Notch-Mediated Lateral Inhibition Refines Cellular Spacing Patterns
Cells of One Specialized Type Can Be Forced to Transdifferentiate Directly Into Another
ES and IPS Cells Are Useful for Drug Discovery and Analysis of Disease
Summary
Problems
References

Chapter 23 Pathogens and Infection
INTRODUCTION TO PATHOGENS AND THE HUMAN MICROBIOTA
The Human Microbiota Is a Complex Ecological System That Is Important for Our Development and Health
Pathogens Interact with Their Hosts in Different Ways
Pathogens Can Contribute to Cancer, Cardiovascular Disease, and Other Chronic Illnesses
Pathogens Can Be Viruses, Bacteria, or Eukaryotes
Bacteria Are Diverse and Occupy a Remarkable Variety of Ecological Niches
Bacterial Pathogens Carry Specialized Virulence Genes
Bacterial Virulence Genes Encode Effector Proteins and Secretion Systems to Deliver Effector Proteins to Host Cells
Fungal and Protozoan Parasites Have Complex Life Cycles Involving Multiple Forms
All Aspects of Viral Propagation Depend on Host Cell Machinery
Summary

CELL BIOLOGY OF INFECTION
Pathogens Overcome Epithelial Barriers to Infect the Host
Pathogens That Colonize an Epithelium Must Overcome Its Protective Mechanisms
Extracellular Pathogens Disturb Host Cells Without Entering Them
Intracellular Pathogens Have Mechanisms for Both Entering and Leaving Host Cells
Viruses Bind to Virus Receptors at the Host Cell Surface
Viruses Enter Host Cells by Membrane Fusion, Pore Formation, or Membrane Disruption
Bacteria Enter Host Cells by Phagocytosis
Intracellular Eukaryotic Parasites Actively Invade Host Cells
Some Intracellular Pathogens Escape from the Phagosome into the Cytosol
Many Pathogens Alter Membrane Traffic in the Host Cell to Survive and Replicate
Viruses and Bacteria Use the Host-Cell Cytoskeleton for Intracellular Movement
Viruses Can Take Over the Metabolism of the Host Cell
Pathogens Can Evolve Rapidly by Antigenic Variation
Error-Prone Replication Dominates Viral Evolution
Drug-Resistant Pathogens Are a Growing Problem
Summary
Problems
References

Chapter 24 The Innate and Adaptive Immune Systems
THE INNATE IMMUNE SYSTEM
Epithelial Surfaces Serve as Barriers to Infection
Pattern Recognition Receptors (PRRs) Recognize Conserved Features of Pathogens
There Are Multiple Classes of PRRs
Activated PRRs Trigger an Inflammatory Response at Sites of Infection
Phagocytic Cells Seek, Engulf, and Destroy Pathogens
Complement Activation Targets Pathogens for Phagocytosis or Lysis
Viruses at Disrupt Host Cell To Prevent Viral Replication
Natural Killer Cells Induce Virus-Infected Cells to Kill Themselves
Dendritic Cells Provide the Link Between the Innate and Adaptive Immune Systems
Summary

OVERVIEW OF THE ADAPTIVE IMMUNE SYSTEM
B Cells Develop in the Bone Marrow, T Cells in the Thymus
Immunological Memory Depends On Both Clonal Expansion and Lymphocyte Differentiation
Lymphocytes Continuously Recirculate Through Peripheral Lymphoid Organs
Immunological Self-Tolerance Ensures That B and T Cells Do Not Attack Normal Host Cells and Molecules
Summary

B CELLS AND IMMUNOGLOBULINS
B Cells Make Immunoglobulins (Igs) as Both Cell-Surface Antigen Receptors and Secreted Antibodies
Mammals Make Five Classes of Igs
Ig Light and Heavy Chains Consist of Constant and Variable Regions
Ig Genes Are Assembled From Separate Gene Segments During B Cell Development
Antigen-Driven Somatic Hypermutation Fine-Tunes Antibody Responses
B Cells Can Switch the Class of Ig They Make
Summary

T CELLS AND MHC PROTEINS
T Cell Receptors (TCRs) Are Ig-like Heterodimers
Activated Dendritic Cells Activate Naïve T Cells
T Cells Recognize Foreign Peptides Bound to MHC Proteins
MHC Proteins Are the Most Polymorphic Human Proteins Known
CD4 and CD8 Co-receptors on T Cells Bind to Invariant Parts of MHC Proteins
Developing Thymocytes Undergo Negative and Positive Selection
Cytotoxic T Cells Induce Infected Target Cells to Kill Themselves
Effector Helper T Cells Help Activate Other Cells of the Innate and Adaptive Immune Systems
Naïve Helper T Cells Can Differentiate Into Different Types of Effector T Cells
Both T and B Cells Require Multiple Extracellular Signals For Activation
Many Cell-Surface Proteins Belong to the Ig Superfamily
Summary
Problems
References